Volume 25, Issue 3 (12-2022)                   jha 2022, 25(3): 125-149 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Setoudegan M, Ayani S, Akbarzadeh M, Shekarchi S, Nasiri S. Developing a clinical decision support system for prediction of warfarin dosage based on computer interpretable guideline. jha 2022; 25 (3) :125-149
URL: http://jha.iums.ac.ir/article-1-4224-en.html
1- Independent Researcher.
2- PhD in Medical Informatics, Research Center, FANAP Co, Tehran, Iran
3- Associate Professor Department of Cardiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran
4- Research expert, Iran University of Medical Sciences, Tehran, Iran
5- Assistant Professor, Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran , nasiri.so200@gmail.com
Abstract:   (1384 Views)
Introduction: Anticoagulation therapy is one of the most important strategies for preventing clot formation and subsequent stroke, with warfarin representing the most widely used oral anticoagulant. However, predicting the outcomes of warfarin administration poses a major challenge for physicians because of the narrow boundary between the therapeutic and toxic levels of warfarin. Clinical decision support systems (CDSSs) can be used as a tool to improve both adherence to clinical guidelines and transfer of evidence-based knowledge to daily clinical practice for dose adjustment, thereby helping reduce medical errors. The aim of this study was to develop a prototype CDSS for predicting warfarin doses according to computerized clinical guidelines.
Methods: This applied developmental study involving a qualitative design was conducted in two major steps.First, computer-interpretable guidelines were extracted from existing clinical guidelines as a workflow diagram for warfarin therapy and were subsequently evaluated by an expert panel. Second, a prototype CDSS was designed with PHP programming language and SQL database, and Nielson’s heuristic evaluation checklist was used for usability testing.
Results: In the first step, the findings were presented in two main workflows and two sub-workflows. In the second step, a prototype CDSS was designed. The overall usability of the prototype was found to be at a "relatively acceptable" level, with a rating percentage of 92.09.
Conclusion: The usability evaluation results suggest that CDSSs similar to the one presented herein could serve as valuable clinical decision support tools for estimating warfarin dosage. These promising results call for further research aimed at exploring the feasibility of implementing such systems in clinical settings.


 
Full-Text [PDF 1488 kb]   (505 Downloads)    
Type of Study: Research | Subject: Health Information Management
Received: 2022/06/28 | Accepted: 2022/09/21 | Published: 2023/03/15

References
1. Emamgholipour S, Baba akbari A, Pakdaman M, Geravandi S. Economic burden of cardiovascular disease in the southwest of Iran. Int Cardiovasc Res J. 2018;12(1):1-6.
2. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organization; 2011.
3. Ghazisaeedi M, Shahmoradi L, Ranjbar A, Sahraei Z, Tahmasebi F. Designing a mobile-based self-care application for patients with heart failure. Journal of Health and Biomedical Informatics. 2016.3(3):195-204. [In Persian]
4. Koohi F, Salehiniya H, Mohammadian HA. Trends in mortality from cardiovascular disease in Iran from 2006-2010. Journal of Sabzevar University of Medical Sciences.2015; 22(4):630- 8. [In Persian]
5. Saki N, Karandish M, Cheraghian B, Heybar H, Hashemi SJ, Azhdari M. Prevalence of cardiovascular diseases and associated factors among adults from southwest Iran: Baseline data from Hoveyzeh cohort study. BMC Cardiovasc Disord. 2022;22(1):309-19. [DOI:10.1186/s12872-022-02746-y]
6. Safdari R, Larti F, Fathi Salari K, Mohammadpour S. Determining the Information Requirements of Electronic Prescribing and Medication Administration System for Cardiovascular Patients. Payavard Salamat. 2020 Jul 10;14(3):250-63. [In Persian]
7. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. Journal of the American College of Cardiology. 2020;76(25):2982-3021. [DOI:10.1016/j.jacc.2020.11.010]
8. Jalali-Farahani S, Amiri P, Fakhredin H, Torshizi K, Cheraghi L, Khalili D, et al. Health-related quality of life in men and women who experienced cardiovascular diseases: Tehran lipid and glucose study. Health and Quality of Life Outcomes. 2021;19(1):225-35. [DOI:10.1186/s12955-021-01861-2]
9. Sarrafzadegan N, Mohammmadifard N. Cardiovascular disease in iran in the last 40 years: Prevalence, mortality, morbidity, challenges and strategies for cardiovascular prevention. Arch Iran Med. 2019;22(4):204-10.
10. Colonna P, Andreotti F, Ageno W, Pengo V, Marchionni N. Clinical conundrums in antithrombotic therapy management: A delphi consensus panel. Int J Cardiol Heart Vasc. 2017;249:249-56. [DOI:10.1016/j.ijcard.2017.09.159]
11. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study. Circulation. 2013;129(8):837- 47. [DOI:10.1161/CIRCULATIONAHA.113.005119]
12. Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral anticoagulant therapy: Antithrombotic therapy and prevention of thrombosis: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141(2):e44S-e88S. [DOI:10.1378/chest.11-2292]
13. Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J, Kovacs MJ, et al. Evidence-based management of anticoagulant therapy: Antithrombotic therapy and prevention of thrombosis: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141(2):e152S-e84S. [DOI:10.1378/chest.11-2295]
14. Mianehsaz E, Raygan F, Moravveji S A, Daneshvar Kakhaki R, Mesdaginia A. Assessing the effective dose of warfarin in treatment course of the patients referring to Kashan Heart Clinic. Feyz 2011; 14 (4):431-438. [In Persian]
15. O'Neal WT, Sandesara PB, J'Neka SC, MacLehose RF, Chen LY, Bengtson LG, et al. Provider specialty, anticoagulation prescription patterns, and stroke risk in atrial fibrillation. J Am Heart Assoc. 2018;7(6):e007943. [DOI:10.1161/JAHA.117.007943]
16. Tao Y, Zhang Y, Jiang B. Evolutionary learning-based modeling for warfarin dose prediction in Chinese. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion; 2017 July 15 -19; Berlin, Germany. ACM; 2017. p.1380-6. [DOI:10.1145/3067695.3082492]
17. Saffian S, Duffull S, Wright D. Warfarin dosing algorithms underpredict dose requirements in patients requiring≥ 7 mg daily: A systematic review and meta‐analysis. Clinical Pharmacology & Therapeutics. 2017;102(2):297-304. [DOI:10.1002/cpt.649]
18. Fang MC, Go AS, Chang Y, Borowsky LH, Pomernacki NK, Udaltsova N, et al. Warfarin discontinuation after starting warfarin for atrial fibrillation. Circulation. 2010;3(6):624- 31. [DOI:10.1161/CIRCOUTCOMES.110.937680]
19. Saleh MI, Alzubiedi S. Dosage individualization of warfarin using artificial neural networks. Mol Diagn Ther. 2014;18(3):371-9. [DOI:10.1007/s40291-014-0090-7]
20. Grossi E, Podda GM, Pugliano M, Gabba S, Verri A, Carpani G, et al. Prediction of optimal warfarin maintenance dose using advanced artificial neural networks. Pharmacogenomics. 2014;15(1):29-37. [DOI:10.2217/pgs.13.212]
21. Cini M, Legnani C, Cosmi B, Guazzaloca G, Valdrè L, Frascaro M, et al. A new warfarin dosing algorithm including VKORC1 3730 G> a polymorphism: Comparison with results obtained by other published algorithms. Eur J Clin Pharmacol. 2012;68(8):1167-74. [DOI:10.1007/s00228-012-1226-5]
22. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893-962. [DOI:10.1093/eurheartj/ehw210]
23. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Conti JB, et al. 2014 aha/acc/hrs guideline for the management of patients with atrial fibrillation: A report of the American college of cardiology/american heart association task force on practice guidelines and the heart rhythm society. J Am Coll Cardiol. 2014;64(21):e1-e76.
24. Rad F, Hamidpour M, Saadat H, Poopak B. Evaluation of common polymorphism of CYP2C9 in warfarin-treated patients. Sci J Iran Blood Transfus Organ. 2016.;12(4):340-6. [In Persian]
25. Saffian SM, Wright DF, Roberts RL, Duffull SB. Methods for predicting warfarin dose requirements. Ther Drug Monit. 2015;37(4):531-8. [DOI:10.1097/FTD.0000000000000177]
26. Peleg M, Tu SW. Design patterns for clinical guidelines. Artif Intell Med. 2009;47(1):1-24. [DOI:10.1016/j.artmed.2009.05.004]
27. Cabana MD, Rand CS, Powe NR, Wu AW, Wilson MH, Abboud P-AC, et al. Why don't physicians follow clinical practice guidelines? A framework for improvement. Jama. 1999;282(15):1458-65. [DOI:10.1001/jama.282.15.1458]
28. Khodambashi S, Nytrø Ø. Filling the gap between guideline development and formalization process - a requirement analysis. Stud Health Technol Inform. 2015;210:233-5.
29. Taheri Moghadam S, Sadoughi F, Velayati F, Ehsanzadeh SJ, Poursharif S. The effects of clinical decision support system for prescribing medication on patient outcomes and physician practice performance: a systematic review and meta-analysis. BMC medical informatics and decision making. 2021 Dec;21(1):1-26. [DOI:10.1186/s12911-020-01376-8]
30. Chen CC, Chen K, Hsu C-Y, Li Y-CJ. Developing guideline-based decision support systems using protégé and jess. Comput Methods Programs Biomed. 2011;102(3):288-94. [DOI:10.1016/j.cmpb.2010.05.010]
31. Martínez-Pérez B, de la Torre-Díez I, López-Coronado M, Sainz-de-Abajo B, Robles M, García-Gómez JM. Mobile clinical decision support systems and applications: A literature and commercial review. J Med Syst. 2014;38(1):4. [DOI:10.1007/s10916-013-0004-y]
32. Mohammadpour S, Sadoughi F, Arshi S, Ayani S, Fallahpour M, Bagherzadeh R. Asthma Management System in Primary Care Based on Global Initiative for Asthma and Snell's Drug Interaction: Accuracy and Usability. TANAFFOS (Respiration). 2022 Apr 1;21(2):193-200.
33. Martínez-Pérez B, De La Torre-Díez I, López-Coronado M, Herreros-González J. Mobile apps in cardiology. JMIR mHealth and uHealth. 2013;1(2):e15. [DOI:10.2196/mhealth.2737]
34. Taheri Moghadam S, Sadoughi F, Velayati F, Ehsanzadeh SJ, Poursharif S. The effects of clinical decision support system for prescribing medication on patient outcomes and physician practice performance: A systematic review and meta-analysis. BMC Med Inform Decis Mak. 2021;21(1):98. [DOI:10.1186/s12911-020-01376-8]
35. Kondylakis H, Tsiknakis M. Computerized clinical guidelines: Current status & principles for future research. Stud Health Technol Inform. 2012;180:432-6.
36. Sonnenberg F, Hagerty C. Computer-interpretable clinical practice guidelines. Yearb Med Inform. 2006;15(01):145-58. [DOI:10.1055/s-0038-1638486]
37. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, et al. Comparing computer-interpretable guideline models: A case-study approach. Journal of the American Medical Informatics Association. 2003;10(1):52-68. [DOI:10.1197/jamia.M1135]
38. Sadoughi F, Mohammadpour S, Ayani S, Arshi S. Development of a conceptual model for asthma management system in primary care. Journal of Health Administration. 2020; 23 (2):11-27. [In Persian] [DOI:10.29252/jha.23.2.11]
39. Peleg M, Boxwala AA, Tu S, Zeng Q, Ogunyemi O, Wang D, et al. The intermed approach to sharable computer-interpretable guidelines: A review. J Am Med Inform Assoc. 2004;11(1):1-10. [DOI:10.1197/jamia.M1399]
40. Boxwala AA, Peleg M, Tu S, Ogunyemi O, Zeng QT, Wang D, et al. GLIF3: A representation format for sharable computer-interpretable clinical practice guidelines. J Biomed Inform. 2004;37(3):147-61. [DOI:10.1016/j.jbi.2004.04.002]
41. Friberg L, Bergfeldt L. Atrial fibrillation prevalence revisited. J Intern Med. 2013;274(5):461-8. [DOI:10.1111/joim.12114]
42. Rasmussen RS, Corell P, Madsen P, Overgaard K. Effects of computer-assisted oral anticoagulant therapy. Thromb J. 2012;10(1):17. [DOI:10.1186/1477-9560-10-17]
43. Ayani S. Design and evaluation of a clinical decision support system for estimating insulin dosage in type 1 diabetic patients [dissertation]. Tehran: Shahid Beheshti university of medical science; 2015. [In Persian]
44. Nielsen J. Usability engineering. Fremont: Morgan Kaufmann; 1994. [DOI:10.1016/B978-0-08-052029-2.50007-3]
45. Yet B, Bastani K, Raharjo H, Lifvergren S, Marsh W, Bergman B. Decision support system for warfarin therapy management using Bayesian networks. Decis Support Syst. 2013;55(2):488-98. [DOI:10.1016/j.dss.2012.10.007]
46. Schelleman H, Chen J, Chen Z, Christie J, Newcomb CW, Brensinger CM, et al. Dosing algorithms to predict warfarin maintenance dose in Caucasians and African Americans. Clin Pharmacol Ther. 2008;84(3):332-9. [DOI:10.1038/clpt.2008.101]
47. Orooji A, Langarizadeh M, Aghazadeh M, Kamkarhaghighi M, Ghazisaiedi M, Moghbeli F. Dosing of warfarin in Iranian adult patients with an artificial heart valve using artificial neural networks. Payavard Salamat. 2018;12(4):249-59. [In Persian]
48. Aghazadeh M. Dosing of warfarin in a patient with heart valve replacement using artificial neural networks [master's thesis]. Tehran: Tehran university of medical science; 2014. [n Persian]
49. Qaempanah Z, Arab-Alibeik H, Ghazi Saeed M I, Sadr-Ameli M A. A decision support system for boosting warfarin maintenance dose using fuzzy logic. A decision support system for boosting warfarin maintenance dose using fuzzy logic. Tehran University of Medical Sciences.
50. Saleem JJ, Patterson ES, Militello L, Anders S, Falciglia M, Wissman JA, et al. Impact of clinical reminder redesign on learnability, efficiency, usability, and workload for ambulatory clinic nurses. Journal of the American Medical Informatics Association: JAMIA. 2007;14(5):632-40. Tehran Univ Med J 2015; 73 (4):271-280. [In Persian] [DOI:10.1197/jamia.M2163]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Health Administration

Designed & Developed by : Yektaweb