جلد 23، شماره 3 - ( 7-1399 )                   جلد 23 شماره 3 صفحات 54-42 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

DezhAloud N, Soleimanian Gharehchopogh F. Diagnosis of Heart Disease Using Binary Grasshopper Optimization Algorithm and K-Nearest Neighbors. jha 2020; 23 (3) :42-54
URL: http://jha.iums.ac.ir/article-1-3297-fa.html
دژآلود ندا، سلیمانیان قره چپق فرهاد. تشخیص بیماری قلبی با استفاده از الگوریتم بهینه‌سازی ملخ دودویی و k نزدیک‌ترین همسایه. فصلنامه مدیریت سلامت. 1399; 23 (3) :42-54

URL: http://jha.iums.ac.ir/article-1-3297-fa.html


1- دانشجوی کارشناسی ارشد، گروه مهندسی کامپیوتر، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه
2- استادیار، گروه مهندسی کامپیوتر، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه ، bonab.farhad@gmail.com
چکیده:   (3469 مشاهده)
مقدمه: قلب یکی از ارگان‌های اصلی بدن انسان است و سالم نبودن آن عامل مهمی در مرگ‌ومیر انسان‌ها است. بیماری قلبی ممکن است بدون علامت باشد اما می‌توان از طریق آزمایش‌های پزشکی این نوع بیماری را پیش‌بینی و تشخیص داد. تشخیص بیماری قلبی به تجربیات زیاد پزشکان متخصص نیاز دارد. هدف مطالعه حاضر، تشخیص بیماری قلبی به‌منظور کمک به پزشکان برمبنای ترکیب الگوریتم بهینه‌سازی ملخ دودویی و k نزدیک‌ترین همسایه است. از الگوریتم بهینه‌سازی ملخ دودویی برای انتخاب ویژگی‌ها و از الگوریتم K نزدیک‌ترین همسایه برای طبقه‌بندی استفاده‌شده است.
روش­ ها: این مطالعه از نوع توصیفی- تحلیلی بود.. در این مطالعه، پرونده پزشکی 270 بیمار در حوزه بیماری قلبی با تعداد 13 ویژگی بررسی شد. تعداد بیماران مبتلا برابر با 120 و فقدان بیماری برابر با 150 بود، لذا مجموعه داده در حالت متوازن است. اطلاعات بیماران از پایگاه داده استاندارد UCI استخراج شد. ارزیابی مدل پیشنهادی در شبیه‌سازی MATLAB انجام‌شد.
یافته­ ها: با توجه به ارزیابی‌های انجام‌شده بر روی روش پیشنهادی، درصد صحت برابر با 8/89، درصد حساسیت برابر با 6/89 و درصد ویژگی برابر با 4/90 به دست آمد که در مقایسه با نتایج مطالعات انجام‌شده در حوزه بیماری قلبی، دقت به‌دست‌آمده روش پیشنهادی، قابل‌قبول است. همچنین، درصد صحت روش پیشنهادی برمبنای هفت ویژگی  (Age, Sex, Chest Pain, BP, Electrocardiographic, Angina, Thallium) برابر با 3/90 درصد به‌دست‌آمد.
نتیجه‌گیری: با توجه به نتایج حاصل از این مطالعه، برای تشخیص بیماری قلبی، روش پیشنهادی در تشخیص بیماری و انتخاب ویژگی‌های مهم نسبت به روش‌های قبلی بهتر عمل کرده است.
متن کامل [PDF 1348 kb]   (1484 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: مدیریت اطلاعات سلامت
دریافت: 1399/4/17 | پذیرش: 1399/7/10 | انتشار: 1399/7/10

فهرست منابع
1. Shekar KC, Chandra P, Rao KV. A framework for automatic detection of heart diseases using dynamic deep neural activation functions. Journal of Ambient Intelligence and Humanized Computing. 2020; 1-15.
2. Kausar N, Palaniappan S, Samir BB, Abdullah A, Dey N. (2016) Systematic Analysis of Applied Data Mining Based Optimization Algorithms in Clinical Attribute Extraction and Classification for Diagnosis of Cardiac Patients. In: Hassanien AE, Grosan C, Fahmy Tolba M. (eds) Applications of Intelligent Optimization in Biology and Medicine. Intelligent Systems Reference Library. Springer. Cham; 2015. p. 217-231. [DOI:10.1007/978-3-319-21212-8_9]
3. Publication bias in clinical research [Internet]. 2018 [2018 May 24; cited 2020 Sep 05]; Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
4. ayaraman V, Sultana HP. Artificial gravitational cuckoo search algorithm along with particle bee optimized associative memory neural network for feature selection in heart disease classification. Journal of Ambient Intelligence and Humanized Computing. 2019; 1-15. [DOI:10.1007/s12652-019-01193-6]
5. Amin MS, Chiam YK, Varathan KD. Identification of significant features and data mining techniques in predicting heart disease. Telematics and Informatics. 2019; 36: 82-93. [DOI:10.1016/j.tele.2018.11.007]
6. Parks R, Wigand RT, Othmani MB, Serhier Z, Bouhaddou O. Electronic health records implementation in Morocco: Challenges of silo efforts and recommendations for improvements. International Journal of Medical Informatics. 2019; 129: 430-437. [DOI:10.1016/j.ijmedinf.2019.05.026]
7. Rudolf JW, Dighe AS. Decision Support Tools within the Electronic Health Record. Clinics in Laboratory Medicine. 2019; 39(2): 197-213. [DOI:10.1016/j.cll.2019.01.001]
8. Liu L, Zhao S, Chen H, Wang A. A new machine learning method for identifying Alzheimer's disease. Simulation Modelling Practice and Theory. 2020; 99:1-20. [DOI:10.1016/j.simpat.2019.102023]
9. Ullah R, Khan S, Ali H, Chaudhary II, Ahmad I. A comparative study of machine learning classifiers for risk prediction of asthma disease. Photodiagnosis and Photodynamic Therapy. 2019; 28: 292-296. [DOI:10.1016/j.pdpdt.2019.10.011]
10. Shayanfar H, Gharehchopogh FS. Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems. Applied Soft Computing. 2018; 71: 728-746. [DOI:10.1016/j.asoc.2018.07.033]
11. Gharehchopogh FS, Mousavi SK. A Decision Support System for Diagnosis of Diabetes and Hepatitis, based on the Combination of Particle Swarm Optimization and Firefly Algorithm. Journal of Health and Biomedical Informatics. 2019; 6 (1) :32-45. [In Persian].
12. Ardam S, Soleimanian Gharehchopogh F. Diagnosing Liver Disease using Firefly Algorithm based on Adaboost. Journal of Health Administration. 2019; 22 (1) :61-77. [In Persian].
13. Kazemi M, Mehdizadeh H, Shiri A. Heart disease forecast using neural network data mining technique. sjimu. 2017; 25 (1) :20-32. [In Persian]. [DOI:10.29252/sjimu.25.1.20]
14. Heravi M, Setayeshi S. Intelligent and fast recognition of heart disease based on synergy of ‎linear neural network and logistic regression model. J Mazandaran Univ Med Sci. 2014; 24 (112) :78-87. [In Persian]
15. Sabbagh_Gol H. Detection of Coronary Artery Disease Using C4.5 Decision Tree. Journal of Health and Biomedical Informatics. 2017; 3 (4) :287-299. [In Persian]
16. Mahmoodi MS. Designing a Heart Disease prediction System using Support Vector Machine. Journal of Health and Biomedical Informatics. 2017; 4 (1) :1-10. [In Persian]
17. Nagpal S, Arora S, Dey S, Shreya. Feature Selection using Gravitational Search Algorithm for Biomedical Data. Procedia Computer Science. 2017; 115: 258-265. [DOI:10.1016/j.procs.2017.09.133]
18. Zabbah I, Hassaanzadeh M, kohjani Z. The Effect of Continuous Parameters on the Diagnosis of Coronary Artery Disease Using Artificial Neural Networks. Journal of Torbat Heydariyeh University of Medical Sciences (Journal of Health Chimes). 2017; 4 (4) :29-39. [In Persian]
19. Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM, Mirjalili S. Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Systems with Applications. 20149; 117: 267-286. [DOI:10.1016/j.eswa.2018.09.015]
20. Martin B. Instance-Based Learning: Nearest Neighbour with Generalisation [PhD thesis]. Hamilton: New Zealand; University of Waikato; 1995.
21. Publication bias in clinical research [Internet]. 2004 [Updated 2004; cited 2020 Sep 05]; Available from: http://archive.ics.uci.edu/ml/datasets/statlog+(heart)
22. Wang Y, Li T. Local feature selection based on artificial immune system for classification. Applied Soft Computing. 2020; 87: 1-27. [DOI:10.1016/j.asoc.2019.105989]
23. Tubishat M, Idris N, Shuib L, Abushariah MAM, Mirjalili S. Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Systems with Applications. 2020; 145:1-23. [DOI:10.1016/j.eswa.2019.113122]
24. Ghaemi M, Feizi-Derakhshi MR. Feature selection using Forest Optimization Algorithm. Pattern Recognition. 2016; 60: 121-129. [DOI:10.1016/j.patcog.2016.05.012]
25. Pashaei E, Aydin N. Binary black hole algorithm for feature selection and classification on biological data. Applied Soft Computing. 2017; 56: 94-106. [DOI:10.1016/j.asoc.2017.03.002]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مدیریت سلامت می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Health Administration

Designed & Developed by : Yektaweb