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ABSTRACT

Introduction: Congestive heart failure (CHF) is a significant global challenge for
healthcare systems, with its prevalence increasing due to an aging population. Accurate
prediction of the length of stay (LOS) for CHF patients is critical for optimizing hospital
resource management, reducing treatment costs, and improving the quality of medical
care. This study aimed to develop a data mining-based predictive model to estimate the
LOS of CHF patients and identify the most influential factors.

Methods: This cross-sectional study was conducted using the data of 3,421 CHF
patients hospitalized at Seyed Al-Shohada and Ayatollah Taleghani hospitals in Urmia,
Iran, between 2018 and 2020. Data from Seyed Al-Shohada Hospital were used for
model training (80%) and testing (20%). The LOS was categorized into short-term and
long-term classes using K-means clustering. Random forest, Decision tree (C5.0),
Artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS)
were applied to classify LOS. Techniques such as oversampling, undersampling, and
SMOTE were applied to balance the classes, and 10-fold cross-validation was used to
ensure model reliability. The Apriori algorithm was also used to discover association
rules.

Results: The random forest achieved the best performance with an accuracy of 87.14%,
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a sensitivity of 97.56%, and an AUC of 85.40%. Key predictors of LOS included
elevated creatinine levels, low hemoglobin, male gender, and underlying comorbidities.
The Apriori algorithm also revealed significant clinical and meaningful associations
among variables.

Conclusion: The proposed model can serve as an effective tool for predicting LOS in
CHF patients and support clinical and administrative decision-making in hospital
settings.

Association rule mining

d- 1061882/jha.28.2.53

What was already known about this topic:
e Congestive heart failure (CHF) is among the costliest chronic diseases with a high rate of hospital
readmission.
o Accurate prediction of the length of stay (LOS) in CHF patients is essential for bed management, discharge
planning, and optimal allocation of hospital resources.
o Traditional statistical methods often lack the accuracy and interpretability required in real-world clinical
settings for LOS prediction.

What this study added to our knowledge:
e The prolonged hospital stay in CHF patients is significantly associated with elevated creatinine levels, low
hemoglobin, and the presence of comorbidities.
Copyright: © 2025 The Author(s); Published by Iran University of Medical Sciences. This is an open-access article distributed under the terms
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Extended Abstract

Introduction

Congestive heart failure (CHF) is one of the most
common and severe chronic diseases worldwide,
significantly contributing to increased mortality
rates and reduced quality of life [1-3]. Owing to
frequent and prolonged hospitalizations, CHF
imposes substantial pressure on hospital systems,
including inpatient beds, medical staff, and
healthcare equipment. Global estimates indicate that
CHF affects approximately 64.3 million people,
with a prevalence of 1%-2% among adults in
developed countries and over 25 million cases
worldwide [4-6]. In the United States alone,
healthcare costs associated with CHF are projected
to rise from $39 billion to over $153 billion by 2030
[7, 8]. The growing prevalence of CHF is
particularly evident in developing countries such as
Iran, where an aging population is accelerating
disease incidence [9, 10]. Accurate prediction of the
length of stay (LOS) for CHF patients enables
healthcare providers to better estimate bed
occupancy rates and optimize hospital operations.
For CHF patients, LOS prediction also facilitates
better discharge planning, which is critical for
improving patient outcomes and minimizing the risk
of readmission [11].

Data mining techniques provide innovative
methods to analyze large-scale healthcare data and
can be effectively used to develop LOS prediction
models [12-17]. Machine learning and data mining
have been applied effectively for health-related
predictions, particularly with models such as support
vector machines (SVM) and random forests (RF).
For instance, Hache-Sou et al. [18] applied machine
learning algorithms to predict LOS in cardiac
patients, achieving 96.4% accuracy. Similarly,
Turgeman et al. [17] used regression trees (Cubist)
and SVM for LOS prediction, achieving 84%
accuracy. However, these studies often lack external
validation and focus primarily on general cardiac
patients rather than CHF populations. Moreover,
previous research has rarely employed association
rule mining techniques, such as the Apriori
algorithm, to identify specific factors influencing
prolonged LOS. The Apriori algorithm enables the
extraction of actionable clinical insights by
identifying associations between patient features
and LOS patterns [19, 20].

In the context of LOS prediction for CHF
patients, a significant research gap remains in
applying advanced data mining techniques to
improve predictive accuracy and identify key
clinical predictors. Studies by Luo et al. [21] and
Dagistani et al. [22] have demonstrated the potential
of algorithms such as RF for LOS prediction.
However, only a few studies have specifically
targeted CHF patients, and fewer still have applied a

combined approach of predictive modeling and
association rule mining to provide comprehensive
clinical insights. To address these gaps, the present
study proposes a data mining framework that
combines various machine learning algorithms for
accurate LOS prediction, along with the Apriori
algorithm to uncover hidden associations in CHF
patient data.

Methods

Data collection: This study was conducted using
a retrospective cross-sectional design. Data were
collected from 3,421 patients diagnosed with CHF
discharged between 2018 and 2020 from Seyed Al-
Shohada and Ayatollah Taleghani Hospitals in
Urmia, Iran. A total of 1,690 records from Seyed Al-
Shohada Hospital were used as the primary dataset
(Dataset 1) for model development, while 1,719
records from Avyatollah Taleghani Hospital were
used as an external validation dataset (Dataset 2).

The dataset included 27 variables covering
demographic information (e.g., age, gender) and
clinical characteristics such as hypertension history,
length of stay (LOS), family history, diabetes,
dyslipidemia, history of valve replacement,
coronary artery bypass grafting, angioplasty, mitral
balloon valvuloplasty, chronic pulmonary disease,
asthma, stroke, atrial fibrillation, myocardial
infarction, pericardial effusion, comorbidities,
smoking, drug addiction, alcohol use, underlying
etiology, elevated creatinine, low hemoglobin,
number of CHF-related hospitalizations, and
number of cardiovascular-related hospitalizations.
Only patients with an ICD-10 code of 150.0 (CHF)
were included.

Data cleaning: Variables such as body mass
index (BMI) were excluded due to more than 70%
missing data (1,183 cases), which could
significantly bias model performance. For variables
with less than 1% missing data, such as elevated
creatinine (4 missing data) and low hemoglobin (17
missing data), mode imputation was applied. These
strategies were implemented to preserve model
accuracy and minimize errors from missing data.

Feature selection: In consultation with expert
cardiologists and by referencing medical guidelines
(e.g., ESC 2021 for heart failure), 27 out of 35
available variables were selected for analysis. This
selection was validated through literature review
[21, 23-27], manual review of patients’ electronic
health records, and expert inputs. A panel of four
cardiologists (average age: 52 years; average
experience: 19 years; three males, one female)
participated in this process.

Clustering: To transform LOS into a
classification-ready format, K-means clustering was
applied, guided by Silhouette coefficient (0.65) and
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the Elbow method to determine the optimal number
of clusters. Clustering served as an unsupervised
pre-processing step to uncover natural patterns in the
data. Results indicated that K = 2 was optimal,
consistent with prior studies that suggested a 7-day
threshold to distinguish short and long hospital stays
[28]. Accordingly, LOS was categorized into short
stay: < 7 days and long stay: > 7 days.

K-means clustering was performed after initial
pre-processing (removing invalid records and
imputing missing values) but before data balancing,
to preserve the natural distribution of the data.

Balancing the data: To balance the binary LOS
classes, resampling techniques including over-
sampling, under-sampling, and synthetic minority
over-sampling technique (SMOTE) were applied.
SMOTE achieved the best performance an AUC of
85% and F1-score of 78%, providing more diverse
and generalizable synthetic samples. Resampling
was performed only during model training for
supervised classifiers.

Apriori rule mining: The Apriori algorithm was
employed to identify significant associations among
variables. It was applied directly to the binary-
labeled dataset (short vs long LOS) derived from K-
means clustering, avoiding potential biases from
machine learning classification outputs.

Model training: The initial dataset consisted of
1,690 records. After preprocessing and removing
incomplete cases, 1,248 records remained. The
dataset was then split into 80% training (1,000
records) and 20% testing (248 records). Modeling
was conducted using SPSS Clementine 12 and R.
Machine learning algorithms including decision tree
(DT), neural network (NN), and adaptive neuro-
fuzzy inference system (ANFIS) were evaluated.
Random forest (RF) outperformed other models and
was fine-tuned using grid search with 10-fold cross-
validation. The final optimized hyperparameters for
RF included number of trees: 100, features per split:
5, maximum tree depth: 30, splitting criterion: Gini
index, minimum samples per split: 2.

While all algorithms were fine-tuned, RF showed
superior improvements and resistance to overfitting
compared to other models.

External validation: To evaluate the model
generalizability, the trained model was validated on
an independent dataset of 1,719 records from

Ayatollah Taleghani Hospital. Pre-processing was
applied in the same way as for Dataset 1. The BMI
was excluded as well. The validation set included
1,133 patients (65.9%) with LOS < 7 days and 586
patients (34.1%) with LOS > 7 days.

Evaluation: Model performance on both the
training and testing datasets was assessed using the
standard metrics, such as accuracy, sensitivity
(recall), specificity, precision, Cohen’s kappa, F1-
score, ROC curve and AUC [29-33].

Results

Dataset 1 (Seyed Al-Shohada Hospital): The
dataset was divided into two classes: short and long
stay. The Table 1 outlines the characteristics of each
class.

Table 1. Comparison of clinical and demographic
features (Dataset 1)

Feature Short- Long- p-value
term term
(n=1171) (n=519)
Mean age (years) 68.2 + 753+ <0.001
12.2 10.8
Male gender (%) 52.1 58.7 0.013
Hypertension (%) 65.4 78.2 <0.001
Diabetes (%) 321 45.6 <0.001
Atrial fibrillation (%) 15.3 28.9 <0.001
Elevated creatinine 48.2 724 <0.001
(%)
Low hemoglobin (%) 53.1 68.9 <0.001
History of 8.7 125 0.021

angioplasty (%)

Of the 27 variables examined, only those showing
statistically significant differences between the short
and long stay (p < 0.05) are reported in Table 1.

Baseline feature analysis revealed that patients
with long hospital stays were significantly older and
had a higher prevalence of comorbidities (diabetes,
hypertension) and laboratory  abnormalities
(elevated creatinine, low hemoglobin).

The algorithm implementation on dataset 1
(Seyed Al-Shohada Hospital) showed that RF
outperformed decision trees, ANN, and ANFIS. As
shown in Table 2, RF achieved accuracy of 87.14%,
sensitivity of 97.56%, specificity of 23.24%, AUC
of 55.40%, and F1-score of 71.13%.

Table 2. Algorithm performance on dataset 1 (Seyed Al-Shohada Hospital)

Algorithm Accuracy (%)  Sensitivity(%)  Specificity(%) AUC (%) Kappa (%)  Fl-score
Decision tree (C5.0) 67.56 94.18 07.08 51.03 01.55 65.61
Artificial neural network  64.24 92.24 26.88 59.56 20.75 69.36
(ANN)

ANFIS 67.15 84.44 27.86 56.15 13.73 65.82
Random forest (RF) 87.14 97.56 23.24 55.40 22.95 71.13

After obtaining the above metrics, three balancing
techniques (SMOTE, over-sampling, and under-
sampling) were applied. SMOTE was applied only

to the training data to balance class distribution.
Evaluation was performed on the original,
imbalanced test data. As a result, no significant
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improvement in accuracy was observed, but
sensitivity and F1-score improved compared to the
case without SMOTE. The slight decrease in
specificity reflects the model’s shifted focus toward
the long-stay class. As summarized in Table 3,

Figure 1, and Figure 2, in the balanced dataset, RF
demonstrated the best separation as well (AUC =
0.854). Table 4 shows the important features for
LOS prediction based on the final RF model.

Table 3. Comparison of C5.0, ANFIS, and Random Forest after SMOTE balancing (Test Set - Seyed Al-Shohada

Hospital)
Metric Accuracy%o Sensitivity%  Specificity% AUC% Kappa%o F1-score%
C5.0 85.13 91.09 70.00 80.55 64.63 79.16
ANFIS 73.17 85.28 57.04 71.16 43.59 68.36
Random 81.45 98.39 64.52 85.40 62.90 84.14
Forest

ROC Curve for Models (after SMOTE)

0.8

=)
o

o
S

True Positive Rate

0.2

=0.85)
= €5.0 (AUC = 0.81)
0.0 ANFIS (AUC = 0.71)

0.0 0.2 04 0.6 0.8 1.0
False Positive Rate

Figure 1. ROC curves of the algorithms (Dataset 1)

Table 4. Important predictive features

Confusion Matrix - Random Forest (After SMOTE)

Short Stay

Actual Label

Long Stay

Short Stay

Long Stay

Predicted Label

Figure 2. Confusion matrix for dataset 1

Rank Variable Predictive Role

Explanation

1 History of Positive Patients with a history of coronary artery bypass grafting (CABG) were more
CABG likely to have a hospital stay longer than 7 days.

2 Diabetes Positive Diabetic patients were more frequently found in the long-term stay group.

3 Dyslipidemia  Positive Dyslipidemia was associated with longer hospital stays

4 Male Gender  Positive The proportion of male patients was higher in the >7-day stay group.

5 Hypertension  Negative Hypertension was more common among patients with shorter stays.

6 History of Positive Patients with a history of percutaneous coronary intervention (PCI) had longer
PCI lengths of stay.

7 Elevated Negative High creatinine levels, particularly when combined with hypertension, were
Creatinine associated with shorter hospital stays.

The Apriori algorithm was used to extract rules
identifying key factors affecting length of stay.
Support and confidence thresholds were selected
empirically, based on literature and expert
validation. The following two rules were considered
most clinically meaningful:

e Rule 1: Male patients with hypertension, no
valve replacement history, and elevated
creatinine are more likely to have shorter
hospital stays (Support: 0.107; Confidence:
0.923)

e Rule 2: Patients with atrial fibrillation and
elevated creatinine, but no angioplasty, no

stroke, and no addiction history, are more likely
to have longer stays (Support: 0.104;
Confidence: 0.864)

Dataset 2 (Taleghani Hospital): This dataset
included 1719 patients, divided into two groups:
short stay (n=1133 patients/ 65.9%, long stay (n=
586 patients /34.1%). This dataset was used only for
evaluation of previously developed models. Table 5,
Figure 3, and Figure 4 confirm the generalizability
and real-world applicability of RF model. The
consistency in accuracy (77.40%) and AUC
(84.82%) supports its use in clinical environments.

Table 5. Algorithm performance for dataset 2 (Taleghani Hospital)

Algorithm Accuracy% Sensitivity%o Specificity%o AUC%  Kappa% F1-score%
Random Forest (RF) 77.40 94.32 68.61 84.82 65.40 73.90
Decision Tree (C5.0) 74.05 93.24 70.29 81.47 65.40 72.91
ANFIS 76.03 83.68 70.30 76.99 52.50 71.90
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ROC Curve (Dataset 2)
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Figure 3. ROC curve for dataset 2(Taleghani Hospital)
Hospital)

Discussion

The proposed model was successfully classified
the length of stay (LOS) for patients with congestive
heart failure (CHF) with high accuracy by
employing the random forest algorithm. The model
performance was acceptable on both the internal and
external validation datasets, and results indicated
that machine learning-based approaches are
effective tools for predicting LOS in CHF patients.

These findings are consistent with the the study
by Dagistani et al. [22], which employed data-driven
algorithms to analyze the medical records of cardiac
patients. However, that study did not report how
missing data were handled, whereas in the present
study, careful preprocessing and systematic
handling of incomplete data were crucial for
enhancing the model performance. The use of the K-
means algorithm for clustering LOS facilitated a
more precise separation grouping of patients and
contributed to an improved classification. This
method, combined with advanced algorithms, such
as random forest, outperformed simpler models like
decision trees or artificial neural networks (ANN), a
point that should be further explored in comparison
with similar studies.

In comparison with the study by Aghajani et al.
[34], which focused on the factors affecting LOS in
the general surgery ward in Tehran and reported a
decision tree accuracy of 84.69%, the random forest
model in the current study showed superior
performance. Moreover, although Maharloo et al.
[35] reported high performance of ANFIS for
predicting LOS in ICU patients after cardiac
surgery, in our study, this algorithm underperformed
compared with RF and C5.0. These discrepancies
may result from differences in patient populations,
data characteristics, or preprocessing stages.

In a similar study, Gholipour et al. [36] employed
an artificial neural network algorithm to predict
trauma patients’ survival and LOS in the ward and
ICU. Although their model predicted patients'

Short Stay

Actual Label

Long Stay

Short Stay Long Stay
Predicted Label

Figure 4. Confusion matrix for dataset 2(Taleghani

clinical outcomes with good accuracy (93.33%),
LOS prediction was relatively error-prone. In
contrast, in the present study, the RF model
accurately classified patients into short- and long-
term stay groups with high accuracy and acceptable
AUC. Another notable aspect was the use of the
SMOTE technique for data balancing in the present
study. Unlike studies that used simpler methods such
as undersampling, this approach improved model
accuracy. Overall, employing advanced machine
learning algorithms, especially random forest,
combined with proper data preprocessing and class
balancing improves LOS prediction in patients.
Ultimately, proposed model identified variables
such as gender, hypertension, comorbidities, and
creatinine level as key predictors of LOS in CHF
patients. Specifically, higher creatinine levels and
the presence of comorbidities were associated with
longer hospital stays, whereas male patients with
hypertension but without a history of heart valve
replacement were more likely fall into the short-stay
group. These findings are consistent with
confirming the role of comorbidities and impaired
kidney function in increasing hospitalization
duration. For example, Dagistani et al. [22],
identified chronic diseases such as diabetes and
hypertension as factors contributing increased LOS.
Moreover, previous studies have shown that
impaired kidney function, through its effect on fluid
and electrolyte balance, may delay the recovery
process in CHF patients and increase LOS [37].
Therefore, considering these variables at the time of
admission can play a key role in predicting LOS and
optimizing hospital resource management.
Hypertension also emerged as a significant
predictor, consistent with studies suggesting that it
exacerbates CHF and, due to its association with
comorbid conditions, results in longer hospital stays
[26, 38]. Particularly when combined with other
chronic diseases, hypertension can complicate
patient condition management and delayed
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discharge. This finding aligns with Gottlieb et al.
[39], who showed that CHF patients with
hypertension often remain hospitalized longer due to
the need for more intensive management and the
higher risk of complications.

Creatinine level was another strong predictor of
LOS. Elevated creatinine level indicates impaired
kidney function, which can complicate CHF
treatment. Poor renal function leads to longer
hospital stays because these patients require closer
monitoring, more precise drug therapy, and more
complex management [39].

Atrial fibrillation was also found to be associated
with longer LOS. This cardiac rhythm disorder
usually co-occurs with heart failure and, due to the
need for monitoring, multi-drug therapy, and higher
risk of complications, results in greater resource use
and delayed discharge [40]. Overall, these results
highlight the importance of identifying high-risk
patients at admission so that accurate LOS
prediction can enable more efficient hospital
resource allocation.

Through two complementary  approaches
(random forest algorithm for LOS prediction and
Apriori for association rules extraction), this study
proposed a comprehensive model for analyzing LOS
in CHF patients. While previous studies such as
Hachesu et al. [18] and Torgeman et al. [17] focused
mainly on precise LOS prediction, the present study
enhanced interpretability by association rule
analysis. The Apriori algorithm was applied to
binary-classified data (LOS <7 and >7 days),
identifying specific combinations of patient features.
For example, male patients with hypertension, and
no valve replacement" are more associated with
short stays. These rules complement the random
forest model and can help interpret results and
design targeted intervention programs.

The practical implications of these findings are
significant for care planning and resource allocation
in CHF management. Physicians can use these two
approaches to identify patients at risk of longer stays
early and plan targeted care accordingly. For
instance, feature combinations such as atrial
fibrillation and high creatinine levels, which are
associated with longer LOS, can be applied to design
personalized treatment pathways. Moreover,
external validation using an independent dataset
enhanced robustness and generalizability, indicating
that applicability of this model beyond the study site.

Limitations

Despite its strengths, this study has several
limitations. The data were collected from only two
hospitals in Iran, which may limit the
generalizability of the findings to other healthcare
systems or populations. Furthermore, the dataset
lacked variables such as detailed echocardiographic
data or medication history, which could have

provided a more comprehensive picture of patients’
condition and potentially improved prediction
accuracy.

Future research should include additional clinical
data, particularly imaging and medication-related
variables, to enhance model performance and
clinical relevance. Finally, exploring advanced
machine learning techniques such as ensemble
learning or deep learning may provide deeper
insights into complex interactions within patient
data and further improve LOS prediction in CHF and
related conditions.

Conclusion

This study demonstrated the effectiveness of data
mining techniques for predicting the length of stay
(LOS) for patients with congestive heart failure
(CHF) and highlighted its practical implications for
resource management and patient care. By
integrating predictive modeling with association
rule mining, we proposed a comprehensive approach
that can be adapted to other chronic diseases as well.
Accurate LOS prediction facilitates improved
planning and resource allocation, thereby enhancing
the efficiency of healthcare delivery for CHF
patients. The findings from this model can assist
clinicians in identifying high-risk patients who may
require prolonged care and facilitate timely
interventions.
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